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ABSTRACT

Two significant contributions have been made during this research period in the

research "Robust Control of Systems with Real Parameter Uncertainty and Unmodelled

Dynamics" under NASA Research Grant NAG-l-1102. They are: (1) a fast algorithm for

computing the optimal H**norm for the four-block, the two block, or the one-block optimal

H** optimization problem, and (2) a construction of an optimal H** controller without

numerical difficulty.

In using GD (Glover and Doyle) or DGKF (Doyle, Glover, Khargonekar, and

Francis) approach to solve the standard H**optimization problem, the major computation

burden is on the computation of the optimal H** norm which required bisection search. In

this research period, we developed a very fast iterative algorithm for this computation. Our

algorithm was developed based on hyperbolic interpolations which is much faster than any

existing algorithm. The lower bound of the parameter, "/, in the H** Riccati equation for

solution existence is shown to be the be square root of the supremum over all frequencies

of the maximum eigenvalue of a given transfer matrix which can be computed easily. The

lower bound of T such that the H**Riccati equation has positive semidefinite solution can be

also obtained by hyperbolic interpolation search. Our another significant result in this

research period is the elimination of the numerical difficulties arising in the construction of

an optimal H**controller by directly applying the Glover and Doyle's state-space formulas.

With the fast iterative algorithm for the computation of the optimal H** norm and the

reliable construction of an optimal H** controller, we are ready to apply these tools in the

design of robust controllers for the systems with unmodelled uncertainties. These tools will

be also very useful when we consider systems with structured uncertainties.
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PROGRESS REPORT

ROBUST CONTROL OF SYSTEMS WITH REAL PARAMETER

UNCERTAINTY AND UNMODELLED DYNAMICS

1. INTRODUCTION

This document is the fast-period progress report on the NASA supported research,

"Robust Control of Systems with Real Parameter Uncertainty and Unmodelled Dynamics",

(No. NAG-l-1102). The objective of the proposed research is to develop reliable and

efficient algorithms for the computational problems arising in the design of robust optimal

controllers for the systems with structured and unmodelled uncertainties and apply them to

practical aerospace control systems. We are happy to report that we have obtained some

significant results [1,2,3] in the solution of the four-block, the two block, or the one-block

optimal H** optimization problem. Meanwhile, we also have some primitive results [4,5] in

the mixed H2/H 0. optimization problems which may have great impact on our future

research. Furthermore, the work to be performed in the succeeding budget period has also

been set on the right track.

In the paper, "Iterative Computation of the Optimal I-r Norm By Two-Riccati-

Equation Method" [1], an iterative algorithm for computing the optimal H *_norm by using

DGKF two-Riccati-equation approach [6] was proposed. The celebrating two-Riccati-

equation solution to a standard H** control problem can be used to characterize all possible

stabilizing optimal or suboptimal _ controllers if the optimal or suboptimal IF' norm is

given. No efficient algorithm for computing the optimal or suboptimal H** norm was

available in the literature before this paper was written.

A numerical difficulty caused by the inversion of a singular matrix usually arises in

using the DGKF state-space formulas to construct an optimal H** controller. In the paper,

"Design of an H** Optimal Controller by DGKF State-Space Formulas" [2], we explained

that the numerical difficulty originated from restricting the controller to be strictly proper

and showed that the numerical difficulty can be easily eliminated if a proper controller with

direct feedthrough is allowed.

In the paper, "Computation of the Optimal H _*Norm by H** Riccati Equations and

Hyperbolic Interpolations" [3], we proposed an extremely fast iterative algorithm for

optimal H _' norm computation for a more general H- optimization problem considered by

Glover and Doyle [7]. The algorithm was developed based on hyperbolic interpolations
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which is fasterthananyexistingmethodsin theliterature.Thenumericaldifficultiesarising

in theconstructionof anoptimalH**controllerby directapplyingtheGloverandDoyle's
state-spaceformulaswerealsoaddressedin thepaper.

Thepapers,"NecessaryandSufficientConditionsfor Mixed H2andH*"Optimal
Control" [4] and "Design of a SuboptimalH** Controller with I-12and Bandwidth

Constraints"[5], summarizedourprimitive resultsin themixed H2/H**optimal control.
Theseresultspromptanewresearchproblemwhichwill bebriefly describedin section3.

In section2 of this report, we will show the overall progressin this research
period.In section3, thework for furoreresearchwill bebriefly described.

2. OVERALL PROGRESS

2.1 Introduction

Consider the system

Iz(s)l = I Gll(s) G12(s)llv(s)l := G(s)IV(S)l

[.y(s)J LG21(s) G22(s)A [.u(s)j ku(s)A
(2.1-1a)

u(s) = K(s) y(s) (2.1-1b)

where Gll(S ) E JR(s) plxml, G12(s ) E JR(s) plxm2, G21(s ) E JR(S) p2xml, and G22(S ) E

]l{(S) p2xm2. JR(S) plxml is the set of plxml proper rational matrices with real coefficients.

Recall that the standard H** optimization problem is the problem of finding a proper

controller K(s) such that the closed-loop system is internally stable and I1_" ,t(G,K)II** is

minimized where

_2 (G,K) := Gll + G12K (I - G22K) 1G21

is the transfer function of the closed-loop system from v to z and

(2.1-2)

I1_1.. := sup c [¢(.j_)] (2.1-3)

and 9(.) denotes the maximum singular value.

Let
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G(s)
A

= C 1

C 2

B 1 B 2

(2.1-4)

be a minimal realization of G(s) and A e IRnxn. Here

[AIB]G(s) = C D = { A, B, C, D } (2.1-5)

implies a state-space realization and G(s) = D + C (sI - A)" B.

According to the dimensions of Gn(s), G12(s ), G21(s ), and G22(s), the standard

I-F* optimization problem has the following situations to consider: (a) Pl > m2, P2 < mfi (b)

Pl _ m2, P2 < ml; (c) Pl > m2, P2 > ml; and (d) Pl < m2, P2 > ml. Situation (a) is referred

as the four-block H** optimization problem. Situations (b) and (c) are referred as the two-

block _ optimization problem. Situation (d) is referred as the one-block _ optimization

problem.

Recently, Glover and Doyle [7] presented a celebrating Riccati-equation type

solution to the general N-F*optimization problem (including four-block, two-block, and one-

block problems). Glover and Doyle's approach characterizes all possible stabilizing

suboptimal I-I**controllers which order is not higher than that of the plant. In utilizing these

Glover and Doyle's formulas to design an optimal (or suboptimal) I-I**controller, the most

computationally demanding work is the computation of the optimal (or suboptimal) H**

norm which requires iteration. Up to now in the literature, there is no efficient and

systematic search algorithm available for this computation.

In this report we will present a very fast iterative hyperbolic search algorithm for the

computation of the optimal (or suboptimal) _ norm. The optimum can occur in three

cases. In case (1), the optimum occurs at the smallest ), such that the two H** Riccati

equations have stabilizing solutions X and Y, i.e., these X and Y happens to be positive

semidefinite and p(XY) < 72. Case (2) occurs when Y=0 (or X--0) for all ), and the optimal

H** norm is the smallest), such that X (or Y) is positive semidefinite. The most likely one to

happen most of the time is case (3) in which the optimal I-F* norm is the ), such that the two

H _ Riccati equations have positive semidefinite stabilizing solutions X and Y and p(XY) =

),2 where p(XY) is the spectral radius of XY. In subsection 2.3, the optimal t-I** norm in

case (1) is shown to be square root of the supremum over all frequencies of the maximum
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eigenvalueof agiventransfermatrixwhichcanbecomputedeasily[8,9].Theoptimumin
either case(2) or case(3) canbeobtainedby hyperbolic interpolationsearchwhich is
presentedin subsection2.4.

Except case (1) which does not happenvery often, the Glover and Doyle's
controllerformulas[7] cannotbedirectlyusedto constructanoptimalcontrollersincean

inversionof asingularmatrixwill causenumericaldifficulty. As mentionedin [6] and[10],
adescriptor(or generalizedstate-spacerepresentation)versionof thecontrollerformulas

canavoid this numericaldifficulty. With slight rearrangement,the Glover andDoyle's
controllerformulascanberewrittenin adescriptorform.Thedescriptorform of anoptimal
controllercanthenbereducedto anatleastoneorderlessstate-spacerepresentationwhich
is addressedin subsection2.5.

For convenience,theGloverandDoyle'sstate-spaceformulasfor suboptimalH**
solutionsarelistedin Subsection2.2. In Subsections2.3 and2.4, algorithmsto compute

the optimal H** norm in threecasesare presented.The numerical difficulty in the
constructionof anoptimalH_ controlleris addressedin Subsection2.5.Someillustrative
examplesareincludedin Subsection2.6.

2.2 Glover and Doyle's State-Space Formulas

In [7], Glover and Doyle assume the realization of G(s) is given by (2.1-4) with the

following assumptions.

(i) (A, B2) is stabilizable and (C 2, A) is detectable.

(ii) rank D12 = m2, rank D21 = P2.

[°](iii) D12 = I ' D21 = [0 I], and Dll is partitioned as

I Dllll Dl112 1
Dl121 Dl122

with Dl122 E _ p2xm2,

(iv) D22 = 0 (this can be removed [7] ).

I j_I- A B2 l(v) rank = n + m 2 'V' _ IR.
C 1 D12
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(vi) rank l jc.oI - A B I
C2 D21

= n+P2 V toe IR.

Def'me two Hamiltonian matrices as follows,

and

EA°t[BIR1ETBT- D1.C 1 ] (2.2-1a)

j**(T) := _BIB: _ - _B1DT1 [D.1B1T C] (2.2-1b)

where

I Dll
DI. = [DII DI2], D. I =

D21
(2.2-1c)

and

R= D:'DI*- I _t2Iml0 01'R=0 D*ID:I- I Y2Ipl0 001"
(2.2-1d)

Then the following theorem shows an easy way to construct a suboptimal stabilizing

controller such that I1_ t(G,K)]I** < y where _',e(G,K) is the closed-loop transfer matrix

from v to z.

Theorem 2.2-1: [7]

There exists a stabilizing controller such that II_,t(G,K)ll**

following three conditions hold.

-- T
(i) y> max (_ [I)1111 Dl112], O[Dl111 DTl1211)

(ii) I-L,(y) e dom(Ric) and X(y) := Ric[I-L.(y)] > 0.

J..(y) • dom(Ric) and Y(y) := Ric[J..(y)] > 0.

(iii) p[X(y)Y(7)] < it2.

Moreover, when these conditions hold, one such controller is

< y if and only if the

(2.2-2a)

(2.2-2b)

(2.2-2c)
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wh_e

Ksub(S) = {_ '_

(2.2-3a)

6 =-Dl121D_111(72I - DllI1DT1111)'IDl112 - Dl122 (2.2-3b)

= {F2-_)(C2+F12 ) }Z (2.2-3c)

= -H 2 + (B2+H12)_ (2.2-3d)

•_ = A+HC+(B2+H12)_ (2.2-3e)

Z := ( I- y'2YX )-1 (2.2-3f)

T _-I
H= [Hll H12 H2] =- (ycT+ B1D.1)R (2.2-3h)

and Fll E _;_(ml'p2)xn, F12 E _ p2xn, F 2 E ]R m2xn, Hi1 _ ]Rnx(pl"m2), H12 E ]R nxm2,

H 2 E _ nxp2.

In the above theorem, condition (ii) means that there exist positive semi-definite

solutions X and Y to the algebraic Riccati equations corresponding to the Hamiltonians

H**(y) and J**(7) respectively. Condition (iii) means that the spectral radius of XY is less

than y 2.

The above theorem shows an easy state-space approach to construct a stabilizing

suboptimal controller such that II_",t(G,K)II., < 7. The order of the suboptimal controller

can be the same as that of the plant G(s). The major computation involved is the solution of

two H** Riccati equations which are easy to solve if solutions exist.

The Glover and Doyle's approach is a great break-through in the solution of H _*

optimization problem. Theorem 2.2-1 can also be used to compute the optimal H = norm

and to construct an optimal H** controller. Algorithms for computing the optimal H _ norm

will be presented in subsection 2.4 and the construction of an optimal H _*controller will be

addressed in subsection 2.5. Subsection 2.3 gives the lower bounds of y for the H _' Riccati

equations to have solutions and to have positive semi-definite solutions respectively.



2.3 Lower Bounds for Solution Existence of H" Riccati Equations

As mentioned in the previous subsection, Theorem 2.2-1 can also be employed to

compute the optimal H" norm. The optimal H** norm is the smallest T such that the three

conditions in Theorem 2.2-1 are satisfied. The computation of the optimal H" norm is

closely related to the algebraic Riccati equations associated to the Hamiltonian matrices

H_(_,)and J.(_,).

For the algebraicRiccatiequation associatedto the Hamiltonian matrix H_(y) to

have a unique stabilizing solution, H**(y) must have stability and complementarity

properties [6]. Stability property means that I-I**(7) has no eigenvalues on the jco-axis. With

stability property, H**(y) has n eigenvalues in Re s < 0 and n in Re s > 0. Let %_(H**) be an

n-dimensional spectral space corresponding to eigenvalues in Re s < 0. Partitioning the

matrix constructed from the basis vectors of %_(I-I**), we have

[x,]g_(H**) = Im X2

where X 1, X 2 e _;_nxn. Complementarity property

equivalently, the two subspaces

means that X 1

(2.3-1)

is nonsingular, or

%_(H**), Im[ 0]I (2.3-2)

are complementary. When the Hamiltonian matrix H**(y) has stability and complementarity

properties, X=X2X]: is the unique stabilizing solution of the algebraic Riccati equation

associated to H**(y).

Let _x be the smallest y such that the Hamiltonian matrix H**(y) has no jeo-axis

eigenvalues. Then for every y > _x except some isolated y at which X 1 is singular, the

algebraic Riccati equation associated to H**(y) will have a unique stabilizing solution. The

smallest y such that the Hamiltonian I4_**(,/)has no jc0-axis eigenvalues is given by the

following theorem.

Theorem 2.3-1:

The smallest y such that the Hamiltonian H**(y) has no jco-axis eigenvalues, denoted by

_xX, is the square root of

"'m " 1L_ax[G*l[ I * -I *sup - G12(G12G:2) G:z]GI: (jco)} (2.3-3)
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, III ,

where G 1 l(j co) (G12(JCO) resp.) is the conjugate transpose of Gll(JCO) (G12(JCO) resp.)

and Xmax means the maximum eigenvalue.

Proof:

Let

r(s) = I GTI('s)GII(s) " 72Iml

L GT2(-s)GII(S)

GTI(-S)G12(s) 1

(2.3-4)

It is straightforward to show that

r-l(s) =

A-BR-IDT.c1

T "17 -I T
-CICI+CIDI, R D1.C 1

.BR-IB T

-(A-BR-I DT.CI )T

R-IDT.CI R'IB T

_BR -1

cT D R -1
I I*

R -I

(2.3-5)

and therefore the Hamiltonian H**(y) of (2.2-1a) is the A-matrix of F-l(s). The

realization has no uncontrollable or unobservable modes on the jco-axis. Thus, I-I**(7)

has no eigenvalues on the jco-axis if and only if F'l(s) has no poles on the jco-axis.

Hence, a x, the infimum of y such that I-/**(7) has no jco-axis eigenvalues, is equivalent

to the supremum of y such that

det [Ffjco)] = 0

That is, a X is the supremum of y such that

G: I(jco)GI:(jco)

G:2(jco)GI l(jco)

or

for all co. (2.3-6)

G:20CO)GI20CO)J _2 =

G:I[ I- G12(G:2GI2)-IG:2 ] GII _i = 72 _I

a x is the square root ofTherefore,

for allco (2.3-7a)

for all co (2.3-7b)

sup _.m_x{G:1[I- Ga2(G:2Gx2)-lG:2]Gll (jco)}

which completes the proof.
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T -1 T
Remark 2.3-2: A realization of I - G12(s)[G12(-s)G12(s)] G12(-s ) is given by

" A-B2D:2C 1 -B2B:

T T _(A_B2D:2c1)T-CI(I-DI2DI2)C I

T
- (I-DI2D:2)C I DI2B 2

T
B2D12

T T
el (I-D12DI2)

T
I-DI2DI2

(2.3-8)

which was obtained from a 4n-th order realization and a mathematical pole-zero

cancellation. The mathematical pole-zero cancellation was carded out by applying

similarity transformation and deleting the uncontrollable and/or uncontrollable states

[Ii].

Computation of ctX, the infimum of 7such that H**(7) has no jo>axis eigenvalues

Let

rl2(to ) _max {G:I[I * -I •= - G12(G12G12) GI2]Gll 0to)} (2.3-9)

Then, a x, the infimum of y such that H**(y) has no jo_-axis eigenvalues, is the supremum

of rl(0_). There are several efficient algorithms available for searching for the supremum of

1"1(o)) [8,9]. In [8], a frequency, say tot, is chosen based on the pole location of Gl:(s) and

T -1 T
I - Gx2(s)[G12(-s)G12(s)] G12(-s). Let Y = rl(tot) and then find all the positive real to's

such that rl(O_) = Y. These to's can be easily obtained from computing the jco-axis

eigenvalues of the Hamihonian matrix H**(T). Now, we have the frequency intervals in

which rl(to) > y. Evaluate rl(tO) for each midpoint of these frequency intervals and set y to

be the maximum of these rl(a_)'s. Then, find the new frequency intervals in which rl(to) >

y. According to [9], the convergence of this iterative process is quadratic. This process can

be repeated until only one frequency interval with q(o_) > Y is left and the interval length is

negligible [9]. In [8], this process is terminated when a frequency interval in which 1"1(o))is

greater than y and convex is found. A search method called Brent method was used to

search for the the supremum of lq(_) in the convex frequency interval.

Let ay be the smallest Y such that the Hamihonian matrix J**(y) has no j_-axis

eigenvalues. The computation of ay is similar to that of ax. Define

a = max {ax, ay } (2.3-10)

Then a is the infimum of y such that the two algebraic Riccati equations associated to H_.(T )

12



andJ**(_/) have solutions.

Let _/= 0_and denote the solutions of the two algebraic Riccati equations associated

to H**(y) and J**(y) by X and Y respectively. If X and Y happen to be both positive semi-

definite and p(XY) < 1,2, then cx is the optimal H** norm according to Theorem 2.2-1.

Recall that the case in which the optimum occurs at 0t, the infimum of y such that the two

Riccati equations have solutions, was referred as case (1).

Computation of l3X, the infimum of ysuch that X(_) is positive semidefinite

Let 13x (13y resp.) be the infimum of y such that X (Y resp.) is positive semi-

definite. In case (2), Y (or X resp.) is zero for all y > cx and hence, the optimum occurs at y

= 13x (or y = 13y resp.). In the following, a hyperbolic interpolation search algorithm is

used to compute [IX.

Denote the eigenvalues of X(y) by _,i[X(_)], i=1,2, .... n and let

max{_.i[X(y)]} if all _.i[X(y)] are positive
f[x(_,)] (2.3-11)[ min{ki[X(y)] } if some ki[X(y)] is negative

2 2

We observe that fiX(y)] is a hyperbola-like function of y2. When T2 equals to 13x+e (or [3x-

e, resp.) and e approaches to zero, f[X(y)] will approach to infinity (or negative infinity,

2

resp.). As 1,2 increases from 13x+e to infinity, fiX(y)] decreases monotonically to a positive

number.

To search for I_x, we will use two passes in our algorithm. The ftrst pass is used to

2
find a lower bound x L such that X(,Tx'[) exists and x a < _x and an upper bound x U which

2 2

is greater than 13x. The second pass is to search for 13x.

Since the shape of the graph (112, f[X(y)]) resembles that of a hyperbola, a

hyperbolic interpolation search algorithm will give fast convergence in computing 13X. For

notational simplicity, 1,2 and fiX(y)] are denoted by x and y respectively in the following.

ha the algorithm, we start from arbitrary three points on the graph (x,y). It is easy to choose

three positive numbers x i, i=1,2,3, with xl<x2<x3, such that their corresponding Riccati

equations associated to I--I_(_i) have positive semidefinite solutions X(_i). Computing

2

Yi = f[X(_i)] from (3-11), we have the trio (xi,Yi) , i=1,2,3. Obviously, 13x is smaller

13



_2
than x 1 and hence x 1 qualifies as an upper bound of 15x, denoted by x U. Let (xu,y U) =

(xl,Yl). The abscissa of any point (xL,YL) on the graph (x,y) with YL<0 can serve as a

2
lower bound for 13x"

Now, a hyperbola which interpolates these three points, (xi,Yi), i=1,2,3, can be

easily determined. That is, the three parameters a, b, and c in the hyperbolic equation,

(x-a) (y-b) = c (2.3-12a)

are determined by (xi,Yi), i=1,2,3. They are,

x2 _ x3Y3 _ x3
[(1 -_-T)(1 -(1 -_-1 )(1- xzY------_2) ] x 1

a = xlYl" xlYl (2.3-12b)

Y3 x3 y_(1 - _-_) (1 - _-) - (1 - _-1 ) (1 - )

I = x2Y2 (I - y_ ) a
b = [ xlYl ] Yl (2.3-12c)

x 2 x 2

I Xl (1 -_=_-1) x I

c = ( x a - a ) ( YI " b ) (2.3-12d)

In the graph of the hyperbola, y --->+00 as x _ a. If the trio are in the neighborhood of

(132x,+O0), the a of (2.3-12b) will be closer than any x i to _x. Let xa=a and evaluate

ya=f[X(f'_a)] if X(,]_a) exists. If ya>0, we update (xu,Yu) and the trio as follows,

(xu,Yu) = (xa,ya), (x3,y 3) = (x2,yz), (x2,y 2) = (xl,yl), and (xx,yt) = (xa,ya).

ff ya<0, x a qualifies as a lower bound for _L_ and therefore we have (xt.,YL) = (Xa,Ya). If

X(f-_a) does not exist, i.e., H**(f_) has eigenvalues on the jo)-axis, we suggest to find ccx

first, ax, the infimum of Y such that H,,(y) has no jc0-axis eigenvalues, can be easily

computed by using Theorem 2.3-1 and the algorithm in [8,9]. If X(ax) is positive

semidefinite, then we have case (1) and the optimal H** norm is a x. Otherwise, we have

case (2) and the optimum occurs at l]x which still remains to be found. Let xL=a_ x and then

x L qualifies as a lower bound for 132 since yt.=f[X(f_u)] is negative.

14



Once(XL,YL) and (xu,Yu) are available, we are ready to go to the second pass to

search for _. During the first pass, it is possible to have ya>0 all the time and therefore

there is no chance to obtain x L. In this event, we do not need the second pass. Instead, we

just keep updating the trio and the point (Xa,Ya) is moving closer and closer to the optimal

2 "

point (Bx,+_*). The iterative process can be terminated when lyal is large enough.

In the second pass, we start with the new trio (XL,YL) , (Xu,Yu) and (xE,YE). In

addition to (xL,YL) and (xu,Yu), the point (xE,YE) is the best point which can be chosen

from the trio at the end of the f'trst pass. The best point here means the one with the largest

lyil. Let (xl,Yl) = (xL,YL), (x2,Y2) = (Xu,Yu) , and (x3,y3) = (xE,YE), then a hyperbola

which interpolates these three points can be obtained from the formulas in (2.3-12a) - (2.3-

12d). If x L < a < x U, let xG=a. Otherwise, let XG=(XL+Xu)/2. Evaluate yo=f[X(_G)]. The

point (XL,YL) (or (Xu,Yu), resp.) will be updated by (xG,Y o) if yG<0 (or yo>0, resp.).

Before the updating of (xL,YL) (or (Xu,Yu), resp.), we like to update (xE,YE) by (XL,YL)

((Xu,Y U) resp.) if lyEI < lYLI (or lyEI < lYuI, resp.). This iterative process is repeated until lYGI

is sufficiently large or the gap Ixu-XLI is small enough. In the second pass, we use hybrid

search scheme: the hyperbolic interpolation to speed up the convergence and the bisection

to guarantee the convergence when the hyperbolic interpolation does not work. Once the

trio reaches the neighborhood of the optimum, the convergence rate is quadratic.

Computation of the lower and upper bounds for the optimum of Case (3)

As mentioned, case (3) is the most likely one to happen. In case (3), the optimum

occurs at the y such that p[X(y)Y(y)] = 72 where p(X'Y) is the spectral radius of XY. In

subsection 2.4, a fast iterative algorithm is proposed to compute the optimum. To be able to

use that algorithm, initial lower and upper bounds, Yt, and Yu' are needed. Any y with

which both X(y) and Y(y) are positive semi-definite and p[X(y)Y(y)] > y2 qualifies as a

lower bound. Similarly, any y with which both X(y) and Y(y) are positive semi-definite and

p[X(y)y(y) ] < y2 can serve as an upper bound. It is easy to have an upper bound which can

be chosen arbitrarily large. However, choosing a lower bound is not trivial at all. A small y

may not satisfy the positive semi-definiteness condition and a larger y may violate the

condition p[X(y)Y(y)] > _.

Recall that 13x (13y resp.) is the infimum ofy such that X (Y resp.) is positive semi-

definite. Let
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13= max {[3x,_y} (2.3-13)

Thenany y > 13which satisfies p[X(Y)Y(y)] > y2 qualifies as a lower bound. In order to

find a lower bound, it is not necessary to compute _tx and [3y although they can be obtained

from the hyperbolic interpolation search algorithm described above. An easy way to find a

lower bound is briefly described in the following.

Denote the eigenvalues of X(y)Y(y) by _,i[X(7)Y(7)], i=1,2 ..... n and let

f max{_i[X(y)Y(y)]} if all _.i[X(y)Y(7)] are positiveg[X(y)Y(y)] -- min{_.i[X(y)Y(y)]} if some ki[X(y)Y(y)] is negative
(2.3-14)

We observe that g[X(7)Y(y)] is also a hyperbola-like function of 72. Since the shape of the

graph (7 2, g[X(7)Y(7)]) resembles that of a hyperbola, a hyperbolic interpolation search

algorithm will give fast convergence in finding a lower bound, 7L, which satisfies 7L > 13

and g[X(TL)Y(TL)] > 7t, 2. In the following, 7 2 and g[X(7)Y(7)] are replaced by x and y

respectively to simplify the notation. To find 7L, we start from arbitrary three points on the

graph (x,y). It is easy to choose three positive numbers xi, i=1,2,3, with xl<x2<x3, such

that their corresponding Riccati equations associated to I-I**(_i) (J**(_i), resp.) have

positive semidef'mitesolutions X(_i) (Y(_i), resp.). Computing Yi = g[X(_i)Y(_i)]

from (2.3-14), we have the trio (xi,Yi) , i--1,2,3.

The objective is to search for the optimum point (xo,yo) on the graph (x,y) such that

xo=Yo. In the proposed algorithm, two passes are used to achieve this objective. The first

pass is to find a lower and an upper bound points (xt.,Yt) and (xu,Ytj) such that YL>XL and

xo>Yo>0, and therefore XL<Xo<X u since the graph (x,y) is monotonically decreasing when

y>0. The second pass is to search for the optimum x o. If xl<y 1, we have a lower bound

point (xL,YL)=(xl,yl). It is trivial to have an upper bound point (xu,ycr) from (x2,y2), or

(x3,Y3), or some other point on the graph with large abscissa. Most of time we have xl>yl,

and (xu,yo) = (xl,yl). To find a lower bound point (xL,YL), we employ hyperbolic

interpolations as follows.

Now, a hyperbola which interpolates these three points, (xi,Yi) , i=1,2,3, can be

easily determined. That is, the three parameters a, b, and c in the hyperbolic equation of

(2.3-12a) can be evaluated by (2.3-12b), (2.3-12c), and (2.3-12d) respectively. Let Xr, be

the abscissa of the intersection point of the hyperbola and the line y=x and let Xa=a.

Evaluate ya=g[X(,/"_)Y(,[_)] and yp=g[X(,/'_p)Y(,/'_p)] if they exist. We may have a

lower bound point (xt.,YL)=(xp,yp) if yr,>Xp or have (xt.,YL)=(Xa,Ya) if ya>Xa. If (XL,YL) is
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still not available,we will update(xu,yU)andthetrio by theinformationof (xp,yp)and

(xa,ya) and repeat the iterative process until (Xu,Yu) is found. If yp does not exist (and

neither is yp), we will firstly compute a, the infimum of 7 such that H**(7) and J**(7) have

no jc0-axis eigenvalues. Recall that ct = max {ax, ay} and (xx and ay can be easily

obtained by using Theorem 2.3-1 and the algorithms in [8,9]. For any x > a:,

y=g[X(_)Y(J_)] always exists. Denote a lower bound for the lower bound x L by xuL

which is set to be a: at the first time yp does not exist. When the hyperbolic interpolation

search does not work (i.e. when xp<xUL), we let x B = (XLL+XU)/2 and compute

yB=g[X(_f'_B)Y(_B)]. If yB>XB, we have (xL,YL)=(xB,YB). Otherwise, either XLL or x U

will be updated by x B and the trio can be also updated by using (xB,YB).

When a lower and an upper bound points (xL,YL) and (xu,y U) are available, the

second pass of the algorithm can be used to search for the optimum x o. The second pass of

the algorithm will be stated in the following section.

2.4 Computation of the Optimal H** Norm

Recall that the optimal H °"Norm is the smallest Y such that the two Riccati equations

associated to H,,(T) and J..(Y) have positive semi-definite solutions X(T) and Y(T) and

p[X(T)Y(T)] < T2. There are three cases to consider. The optimum may occur at y = a

which is referred as case (1) and may also occur at either T = I?)xor Y = 13y which is referred

as case (2). ct, 13x, and 13y were defined in the previous section. In case (3), the optimal H**

Norm is the To such that p[X(Yo)Y(yo) ] equals to _.

To compute the optimum, we start from any three points on the graph (y:,

g[X(T)Y(T)]) where g[X(T)Y(T)] ) was defined in (2.3-14). If Y(T) or X(T) is zero and the

optimum occurs at either y = 13x or T = 13y, we have case (2). The computation of 13x (or

13y) has been addressed in the previous section. The optimum can also occur at ? = a x or y

= ay, which was referred as case (1). (xx or ay can be easily computed by using Theorem

2.3-1 and the algorithms in [8,9]. For the rest of the section, we assume that Y(y) and X(T)

are both nonzero and there are only cases (1) and (3) yet to be considered. In case (1), the

optimum occurs at y = a and (x = max{o_x,ay} which can be easily obtained as mentioned.

If we can find a lower bound YL such that g[X(TL)Y(TL)] > T2L, then we have case (3).

Unless such a lower bound TL does not exist, the computation of a is not necessary.

For notational simplicity, we replace (T2, g[X(T)Y(T)] ) by (x, y). The starting three
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points on thegraph(x, y) are (xi,Yi) , i=1,2,3, with Xl<X2<X 3. First of all, we will try to

find a lower bound x L (i.e., "_ and an upper bound x U (i.e., _2u). Usually, the xi's of the

initial trio (xi,Yi) , i=1,2,3, are chosen as large numbers to guarantee solution existence for

the Riccati equations. An upper bound x U can be initially assigned as x 1 if Yl is positive

and Yl < xl. The locating of a lower bound was briefly described at the end of the previous

section. Recall that any point (xL,YL) on the graph (x,y) which is to the fight of _ and

satisfies xL<Y L qualifies as a lower bound point. A hyperbola interpolating these three

points, (xi,Yi) , i=1,2,3, can be easily obtained from (2.3-12). Let Xp be the abscissa of the

intersection point of the hyperbola and the line y=x and let xa be the abscissa of the singular

point of the hyperbola, i.e., Xa=a where a is from (2.3-12b). These two points (Xa,Ya) and

(xp,yp) are good guesses for (XL, YL). If yp > Xa, we have (XL,YL)=(xp,yp). Otherwise, try

to see if we have Ya > xa which gives (xL,Yt.)=(Xa, ya). If the above two inequalities are not

satisfied, we will use (xa,ya) and (xp,yp) to update (xu,Yu) and the trio and repeat the above

iterative process until a lower bound point (xL, YL) is procured.

In the above hyperbolic interpolation search process, yp=g[X(f_p)Y(f_p)] may

not exist since the two Riccati equations may not have solutions. If either H_(_p) or

J..(xf'_p) has eigenvalues on the imaginary axis, we may have case (1). The infimum of 7

such that H,,(7) and J**(7) have no eigenvalues on the imaginary axis, i.e., a, should be

computed by the algorithm proposed in the previous section. If the Riccati solutions X(a)

and Y(tx) are both positive semi-definite and p[X(a)Y(tx)] < a 2, then a is the optimal H**

norm. If either X(a) or Y(a) is indefinite, a bisection search need to be used together with

the hyperbolic interpolation to guarantee convergence. The detailed algorithm is listed at the

end of this subsection.

Now, the lower and upper bound points, (xL,YL) and (xu,Yu) are available. It is

well known that in the graph (x,y), y is a monotonically decreasing function of x when x >

[32. From the observation of numerous examples, we have a conjecture that y is a convex

function of x when x > 132. Furthermore, the shape of the graph (x,y) resembles a

hyperbola and therefore a hyperbolic interpolation search method can be used to speed up

the convergence. Although the proposed algorithm is devised by exploiting the conjectural

properties of hyperbola resemblance and convexity, it still works even these properties fail

to hold. In case that any of these properties does not exist, the algorithm will detect it and

switch the search scheme to the bisection and the convergence will still be guaranteed. Even

the conjecture is not absolutely correct, the chance for it to fail in practice would be very
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rare.

To searchfor theoptimalH**norm,Yo'whichsquareis theabscissaof thepointon

thegraph(x,y) with x=y, westartfrom anewtrio (xL,YL),(xU,YU),and(xE,yE)which are

availableat theendof thefin'stpass,i.e., thepassof finding lower andupperboundsxL

andxu. Thepoint (xE,YE)is theavailableonewhich hasthelargestlyil excluding(xL,YL)
and(xu,Yu).We alsoinitialize _L=XLand_u=Xu. A hyperbolawhich interpolatesthese

threepointscanbeeasilydetermined.Let (xl,Yl) = (xL,YL), (x2,Y2) = (Xu,Yu), and (x3,y 3)

= (XE,YE), then a hyperbola which interpolates these three points can be obtained from the

formulas in (2.3-12a) - (2.3-12d). The abscissa of intersection point of the hyperbola and

the straight line y=x, denoted by x o, will be close to Xo=@ According to our conjecture,

x o is supposed to be between _L and _u" If that is not the case, x G is reassigned as

(_L+_U)/2" Now, we evaluate Yo = P [X(4/'_a )Y(f_G )].

In the graph (x,y), if y is a convex function of x, the following theorem can be

employed to find a bracket which encloses the optimum x o.

Theorem 2.4-1:

Given three points (xL,YL), (Xu,Yu), and (xG,Y G) on the graph (x,y). Assume that YL >

XL' YU < XU' and x L < x o < x u. If y is a convex function of x, we have the i'ollowing:

(i)If Yo < XG' then

06 < x o < 05 (2.4-1a)

(ii) If YG > XG' then

where

05 < x o < 06 (2.4-1b)

YL" YG

YL " XL x L - XG
05 = . (2.4-2a)

1 - YL YG
xL - x G

and

YU - YG

YG - XG x U - xG
0 6 ---- (2.4-2b)

1 Yu - YG
x U - x G

Proof: It is straightforward to show these inequalities by geometry.
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where

Now wehaveabracketwhichenclosestheoptimumxo,i.e.,

_L < xo < _u (2.4-3a)

_L = 06 and _u = 05 if yo < x o, (2.4-3b)

_L =05 and _u =06 if Yo >xo" (2.4-3c)

If the gap between _L and _u is negligible, the search algorithm will be terminated and then

we have the optimum Xo= _u" Otherwise, the trio (xL,YL), (Xu,Yu), and (xE,Y E) shall be

updated and the hyperbolic interpolation search shall be repeated until the gap between _L

and _u is small enough. The updating of the trio is executed as follows. When YG > XG' XG

is a better lower bound than x L and therefore we update (xE,Y E) by (xL,YL) if [xG-xLI < IxG-

XEI and update (xL,Y L) by (xG,Yo). When YO < xo' xG is a better upper bound than x U and

therefore we update (xE,y E) by (Xu,Yu) if Ixo-XuI < ]xo-xEI and update (Xu,Yu) by (xo,YG).

In the above proposed search algorithm, we used the conjectured property of

convexity. As mentioned above, there is no proof yet for this conjecture. However, it is

easy to check if the final _u approximately equals to x o. Evaluate 9u =

P[X(_u )Y(_u )], and check if9 U < _u and (_u- _u ) is negligible. If the condition is

satisfied, practically we have the optimum Xo=_ U, i.e., we have the optimal H** norm

yo=_u . It is almost impossible for the condition to fail. Nevertheless, we can update the

lower and upper bounds x L and x U and use the bisection search to reduce Xu-X L in case that

the condition fails.

To summarize, an iterative algorithm for computing the optimal H- norm is listed as

follows.

Iterative Algorithm for Computing the Optimal H** Norm

Initialization:

A 1. Initialize the tolerances e 1, e2, _3' which are small positive numbers, and let XLL =

0, x L = 0 and x U = 0.

A 2. Arbitrarily choose three large xi, i=1,2,3, such that x 3 > x 2 > x 1 > 0 and their

corresponding Riccati solutions X_i ) and Y(_i ) are all positive semi-definite.

A3. If both X and Y are nonzero, go to D1.
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Computation of]3 X, the optimum for Case (2): (First Pass)

B 1. Either X or Y is zero. Without loss of generality, we assume that Y--0 and let Yi =

flX(_i)], i=1,2,3, where f[X(_i)] was defined by (2.3-11). Let (Xu,Yu) =

(xl,Yl).

B 2. Let x a = a where a is evaluated from (2.3-12b). Compute Ya = f[X(,/'_,)] if X(f_a)

exists. If X(f_a) does not exist, go to CI.

B3. Ifya>(1/e3),theoptimalHo*normisf'_a. Stop.

B 4. If Ya > 0, update (Xu,Yu) and the trio as follows:

(Xu,Yu)=(xa,Ya), (x3,Y3)=(x2,Y2), (x2,Y2)=(xl,Yl), (xl,Yt)=(xa,Ya), Go to B2.

B5. (xL,YL)=(x,ya), (XE,YE)=(x2,Y2).

Computation of l_x, the optimum for Case (2): (Second Pass)

B 6. Let (xl,Yl)=(xL,YL), (x2,Y2)=(Xu,Yu), (x3,Y3)=(xE,YE), and evaluate the a of (2.3-

12b).

B 7. If x L < a < x o, let x o = a and go to B9.

B 8. Let xc = (XL+Xo)/2.

B 9. Evaluate Ya = f[X(_ G)]"

B 10. If YG > (l/e3)' the optimal H** norm is 4/-_a. Stop.

B 1 1. If IxU - XLI < el, the optimal H** norm is _u. Stop.

B 12. If YG < 0, then update (xE,YE) by J(xL,YL) only if lYLI > lYEI,

and update (xL,YL) by (xG,YG) and go to B6.

B 13. Update (xE,YE) by (Xu,Yo) only if lYuI > lYEl,

and update (Xu,Yu) by (xc,yo) and go to B6.

Computation of otx, the optimum for Case (1) with Y=O:

C 1. Compute o_x, the infimum of 7 such that I-Io.(y) has no jc0-axis eigenvalues, by

using Theorem 2.3-1 and the algorithm in [8,9].

C 2. If X(O_x) is positive semidefinite, the optimal H** norm is czx. Stop.

C 3. Let x L = c_x and and evaluate YL = f[X(_ L)]"

Let (xE,YE) = (x2,Y2) and go to B6.

Find upper and lower bounds for Case (3)."

D 1. Compute Yi = g[X(_i)Y(f_i)], i--1,2,3, where g[X(y)Y(7)] was defined by (2.3-

14).
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D2.

D3.

D4.

D5.

D6.

D7.

DIO.

DI1.

D12.

D13.

DI4.

D15.

D16.

D17.

D18.

D19.

If xl>y v then let (Xu,Yu)=(xl,Yl) and go to D7.

Let (xL,YL) = (xl,Yl).

If x2>y 2, then let (Xu,Yu)=(x2,Y2) and go to FI.

If x3>Y 3, then let (Xu,Yu)=(Xyy3) and go to F1.

Double x3 and evaluate Ya = g[X(_3)Y('f'_3)] and go to D5.

Evaluate a, b, c from (2.3-12b) - (2.3-12d).

Let x a =a and Xp = 1 [ a+b+_/(a+b) 2- 4(ab-c) ]
If Xp < XLL, go tO D18.

If (XLL---0) and (either X(_-X'pp) or Y(,/_p) does not exist), then go to El.

Evaluate yp = g[X(_p)Y(_p)].

If yp > Xp, then (xL,YL) = (Xp,yp), and go to F1.

If (XLL--O) and (Xp > yp > 0), then update the following:

(xu,Yu)=(Xp,Yp), (x3,Y3)=(x2,Y2), (xz,Y2)=(xl,Yl), (xvYl)=(Xp,Yp),

and go to D13.

If (XLL_a3) and (Xp > yp > 0), then update the following:

(Xu,Yu)=(Xp,yp), (x3,Y3)=(x2,Y2), (x2,Y2)=(Xp,Yp),

and go to D13.

(XLL,YLL)=(Xp,yp), (xVyl)=(Xp,yp), and go to DT.

If (XLL<XLL) or (x a does not exist), go to D7.

Evaluate Ya = g[X(f_a)Y(f_a)].

If Ya > Xa' then (xL,YL) = (xa,Ya), and go to F1.

If (XLL---0) and (x a > Ya> 0), then update the following:

(Xu,Yu)=(Xa,Ya), (x3,Y3)=(x2,Y2), (x2,Y2)=(xl,Ys), (xl,Yl)=(Xa,Ya),

and go to D7.

If (XLL#0) and (x a > Ya > 0), then update the following:

(Xu,Yu)=(xa,Ya), (x3,Y3)=(xx,Y2), (x2,Y2)=(Xa,Ya),

and go to DT.

(XLL,YLL)=(Xa,Ya), (XvYl)=(Xa,Ya), and go to DT.

Let x B = (XLL+Xu)/2 and evaluate YB = g[X(_B)Y(_B)]"

If YB > XB' then (xL,YL) = (xB,YB) , and go to FI.

If x s > YB > 0, then update the following:

(Xu,Yu)=(xB,YB), (x3,Y3)=(Xz,Y2), (x2,Y2)=(xB,YB),

and go to DT.
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D20. (XLL,YLL)=(XB,YB), (xl,Yl)=(xB,YB), and go to D7.

Computation of or, the optimum for Case (1):

El. Compute a, the infimum of y such that H**(y) and J.(y) have no jco-axis

eigenvalues, by using Theorem 2.3-1 and the algorithm in [8,9].

E2. If X(a) and Y(o0 are positive semidefinite, and g[X(a)Y(a)] < o_2, the optimal H**

norm is or. Stop.

E 3. Let (XLL,YLL) = (ot2,g[X(ot)Y(a)]) and go to DI8.

Search for the optimum x o at which yo=Xo:

F 1. Now we have the trio, (xL,YL), (Xu,Yu), and (xE,YE), where (xE,Y E) is one of the

(xi,Yi)'S other than (xL,YL) and (Xu,Y U) which has the largest {yi{.

F 2. Let _L = XL' and _u = Xu"

F3. If I_u-_Ll<el, theoptimumxo=_ o. Stop.

F4. Let (xl,Yl)=(xL,YL), (x2,Y2)=(Xu,Yo), and (x3,Y3)=(xE,YE). Compute a, b, and c

from (2.3-12b) - (2.3-12d).

1 [ a+bJ(a+b)2 4(ab-c) ], Yo _-I[X(_G)Y(_G)]XG =_" - = .

If _L < XG < _U ' Go to F8.

xG = (_L+_U)/2, YG = _'1 [X(f_'GG)Y(fx'oo)]"

If YG < xG, Go to F10.

_L = max{05' _L }' _U = rain{06' _U }" Go to Fll.

_L = max{06' _L }' _U = min{05' _U}"

If I_U - _L I > el, go tO FI6.

If 0 < _u- P[X(_u)Y(x_U)] < eZ' then the optimum x o = _o" Stop.

Let x G = (XL+Xu)/2, YG = _'a[X(fx'oo)Y(,f_c)]"

If YG > xG, then let (xE,YE) = (xL,YL) , (xL,YL) = (xG,YG) and go to F2.

Let (xE,YE) = (Xu,Yu), (xU,Yu) = (xG,YG) and go to F2.

If YG > XG, then let (xE,YE) = (xL,YL) , (xL,YL) = (xG,YG) and go to F4.

Let (xE,YE) = (Xu,Yu) , (Xu,Yu) = (xG,YG) and go to F4.

F5.

F6.

F7.

F8.

F9.

F10.

Fll.

F12.

F13.

F14.

FI5.

F16.

F17.
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2.5. Construction of Optimal Controllers

From the Glover and Doyle's formulas in Theorem 2.2-1, a suboptimal H**

controller can be easily constructed. However, as Y approaches to the optimum we will

encounter the inversion of a singular matrix except case (1) which seldom occurs. To

eliminate the numerical difficulty, Glover and Limebeer et. al. [10] rederived the optimal

controIler formulas in a descriptor form (or generalized state-space representation).

Construction of Optimal H** Controllers for Case (3):

The Glover and Doyle's formulas in (2.2-3a) - (2.2-3h) can also be written in a

descriptor form after slight rearrangement. First of all, we consider case (3) which occurs

much more often than the other two cases. When y reaches the optimum, To, which

satisfies _o = p[X(Yo)Y(yo)], the matrix Z in (2.2-30 will become infinity since the matrix

I-_oY(%)X(Yo) is singular. If we try to alSply the formulas (2.2-3a) - (2.2-3h) directly to

construct an optimal H**controller, a numerical difficulty will arise in the implementation of

the ,_ and _ matrices. We will rearrange these formulas such that an optimal H _*controller

can be constructed without any numerical difficulty.

The dual system of the realization in (2.2-3a) can be easily rewritten in a descriptor

form. The state equation (generalized state equation) of the descriptor representation can be

split into two set of equations: one involves first derivative of some state variables and the

other is just an algebraic equation. The state variables which have no derivative in the

equations can be eliminated and then we have a lower order state space representation for

the dual system. The dual of the dual system is identical to the original and therefore we

have an optimal H** controller as follows:

K°pt(S) = Ce D¢

where

Ao=[vTA u,-VTA U=(v A ug+V A UIJzi

Bo= vTB,-vTAou,<V A,Ug+v B,

(2.5-1)

(2.5-2a)

(2.5-2b)

C c = [ CDUI- CDU 2 (VTADU2) "tVT2ADUI ] Zi 1 (2.5-2c)
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and

De f) T "t T= _ CDU 2(V2ADU2) V2BD (2.5-2d)

B D = -H 2 + (B 2 + H12)f)

C D = F 2- _(C 2+F12)

A D = (B 2 + H12) C D + (A + HC) E D

E D = I- To2 X(Yo)Y(yo)

(2.5-3a)

(2.5-3b)

(2.5-3c)

(2.5-3d)

Z 1, U 1, U 2, V 1, and V 2 are obtained from the singular value decomposition of E D, i.e.,

ED = [UI U2][:l 0oI[vvI (2.5-4)

Construction of Optimal H** Controllers for Case (2):

In case (2), either Y or X is zero and then the optimum occurs at the smallest y such

that X(y) or Y(y) is positive semidefinite. In the following, with loss of generality we

assume Y = 0. The optimum occurs at 2, = 13,x, i.e., the smallest y such that X(y) is positive

semidefinite. If we try to apply the formulas (2.2-3a) - (2.2-3h) directly to construct an

optimal H** controller, a numerical difficulty will arise since X([Sx) is infinity and so are the

matrices ._ and _.

Let Z.[I-I**([3x) ] be an n-dimensional spectral space corresponding to eigenvalues in

Re s < 0. Partitioning the matrix constructed from the basis vectors of %.[H**(13x)], we

have

where Xl, X 2 E

nurrierical difficulty, we do the singular value decomposition for X T as follows,

Xl T= [O 1 U2] [_I (] IV_l

oLv:J

xl ] (2.5-5)%.[H**(13X)] = Im X2

IRnxn. X 1 is singular and therefore X = X2Xi 1 is infinity. To eliminate the

(2.5-6)
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Employing the sametechniques,the duality and the elimination of unnecessarystate
variables,whichwe just usedfor case(3), anoptimalH**controllercanbeconstructedas

followswithoutanynumericaldifficulty.

where

and

Ao B_

= tVTAoU,-V Ao  (VIAoUJV AoU,JZi'

B c = vTB D - VTADU 2 (VIADU2) t VTBD

Cc = [ CDU1 - CDU2 (v2TADU2)I" vT2ADUI ] _1

Do= 15-CDU2(V_%UJv_so

(2.5-7)

(2.5-8a)

(2.5-8b)

(2.5-8c)

(2.5-8d)

BD = -H2 + 032 + H12)]_ (2.5-9a)

CD = i_2 - I_(C2X1 + i_12) (2.5-9b)

A D = 032 + H12) C D + (A + HC) X 1 (2.5-9c)

Construction of Optimal H** Controllers for Case (1):

For case (1), the formulas (2.2-3a) - (2.2-3h) can be used to construct an optimal

H** controller without any numerical difficulty.

2.6. Illustrative Examples

Four illustrative examples will be included in this section. Example 1 is a simple

four-block H** optimization problem which belongs to case (3). Example 2 is a two-block

H** optimization problem which also belongs to case (3). Example 3 is a four-block H _*

problem which belongs to case (1). Example 4 is a two-block H** problem which is used to

illustrate case (2).
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Example 1:

The following is a simple four-block H** optimization problem which is used to

illustrate the proposed iterative algorithm of computing theoptimal H** norm. A realization

of the plant G(s) is given by

G(s) =

A I B1 B2
C I DII DI2

-1 0

0 2

1 1

0 0

1 1

10100 0 1

0 0 0

0 0 1
, ,, .

0 1 0

Two passes are used to compute the optimum. The fin'st pass is to find a lower and an

upper bounds which bracket the optimum and the second pass is to search for the optimum.

We arbitrarily choose three large numbers xl=100, x2=1000, and x3=10000, and evaluate

Yi = g[X(_i)Y(_i)], i---1,2,3, by (3-14). That is, we start with the trio

(xl,y 1) = (100,2.177485978109461e+01)

(x2,Y 2) = (1000,2.161627203254472e+01)

(x 3,y3) = (10000,2.160056781642087e+01)

Since xl>Yl>O , x I qualifies as an upper bound x U and thus

(Xu,Y U) = (100,2.177485978109461e+01)

The hyperbola which interpolates the trio can be easily determined by (3-12). The abscissa

of the intersection point of the hyperbola with the line y=x is

XG=2.241226047320986e+01. From (3-14), we evaluate YG - g[X('/_G)Y(_G)] and then

we have,

(xG,y G) = (2.241226047320986e+01,2.241227598351088e+01).

After just one iteration of the first pass, we have

(xL,Y L) = (xG,y G) = (2.241226047320986e+01,2.241227598351088e+01 )

since xG<Y G. Now, we have a new trio which include a lower bound point (xL,YL), an

upper bound point (Xu,Yu), and an additional point (xE,YE) which can be chosen from the

previous trio as,

(x E,yQ = (1000,2.161627203254472e+01).
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After just one iteration of the second pass, we find that the optimum x
O

following inequality,

satisfies the

_L _'2"24122754162167e+01 < x ° < 2.24122754162171e+01 =_U

Thus, the optimum x ° is approximately equal to So with accuracy up to 14 digits. For

double checking, we evaluate

p[X(_u)Y(_u)] = 2.241227541621705e+01

which is a little bit less than _u" Therefore, the optimum x o = 2.24122754162171e+01.

That is, the optimal t-I**norm is yo = _o = 4.734160476390413.

With y = 4.7341604768 which is very close to the optimum, from (2.2-3) and partial

fraction expansion we have a suboptimal controller as follows,

K(s) =
-8.9043458823e+00

s+8.7542343140e-01
+ 1.0388615552e+11

s+2.1943944664e+10

The second term of the above expression is a wide band low-pass filter which can be

approximated by a direct feed-through term when Y approaches to the optimum. With

y=yo = 4.734160476390413, from (2.5-7) we have an optimal controller as follows

F087 4198135405183110138288738499608 
K°pt(S)= l 4.451128374445501 [-4.734160476390407 J

which is first-order, one order less than that of the plant.

Example 2:

The following is a two-block H** optimization problem which was studied in [ 12].

A realization of the plant G(s) is given by

G(s) =

A

72

B 1 B 2

Dll D12

D21 D22

"-.1

0

= 1

0

0

0 .099 -.18

1 0 1

.2 0 .01

2.2 .2 0

2 1 0

In the f'u'st pass, we will find a lower and an upper bounds which bracket the optimum. We

arbitrarily choose three large numbers Xl=10, x2=100 , and x3=1000, and evaluate Yi =

g[X(_i)Y(f_i)], i=1,2,3, by (2.3-14). That is, we start with the trio
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(xl,y 1)= (10,9.570601437485001e-04)
(x2,Y2) = (100,8.398403602350264e-04)
(x3,Y3) = (1000,8.295556971685659e-04)

Sincexl>yl>0, x1qualifiesasanupperboundxtj andthus

(Xu,YU)= (10,9.570601437485001e-04)

The hyperbola which interpolates the trio can be easily determined by (2.3-12). The

abscissa of the intersection point of the hyperbola with the line y = x is x G =

1.237935857327897e+00 and from (2.3-12b) we have xa= a =

1.237024692928173e+00. From (2.3-14), Yc and Ya can be computed and then we have

(xo,y G) = (1.237935857327897e+00,4.253228336726583e-02)

(xa,y a) = (1.237024692928173e+00,4.393981296506005e-02)

Now, (xu,Yu) and the trio are updated as follows:

(xo,y u) = (xa,ya) = (1.237024692928173e+00,4.393981296506005e-02)

(x3,Y3) = (x 1,yl ) = (10,9.570601437485001e-04)

(x2,y 2) = (xG,Y G) = (1.237935857327897e+00,4.253228336726583e-02)

(xvy 1) = (xa,Ya) = (1.237024692928173e+00,4.393981296506005e-02)

After the second iteration of the first pass, we have

(x G,yG ) = (1.210987163764649e+00,1.182214405325450e+00)

(xa,y a) = (1.210025237996426e+00,4.621151922644384e+01)

Since Ya>Xa and xo>y o, we can update (xo,yu) and have (xL,YL) as follows:

(xu,y u) = (xc,y o) = (1.210987163764649e+00,1.182214405325450e+00)

(xL,Y L) = (xa, y a) = (1.210025237996426e+00,4.621151922644384e+01)

Now, we have a new trio (xu,Yu), (xL,YL) , and (xE,YE) tO start with in the second pass

where

(xE,Y E) = (1.237024692928173e+00,4.393981296506005e-02).

After just one iteration of the second pass, we find that the optimum x
O

following inequality,

satisfies the

^ _ 1.210963712497e+00= _ux L = 1.210963712471e+00 g x °

Thus, the opfimUmXoisapproximately equM to _u with accuracy upto 12 dints.
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Example 3:

The following is a four-block H** optimization problem which realization is given

by

G(s) =

A
C 1

C 2

B 1 B 2

DI 1 DI2

D21 D22

i

-1 0

0 -2

-- 1 1

0 0

1 1

1 0[0"0 0 1

oo[o

0 ll0

This realization is almost the same as that of Example 1. The only difference is in the 22

position of the A matrix. In the first pass, we try to find a lower and an upper bounds

which bracket the optimum x o. We start with the trio

(x 1,yl ) = (100,1.879778879610986e-01)

(x2,Y2) = (1000,1.873943983436236e-01)

(x3,Y3) = (10000,1.873362964186965e-01)

The abscissa of the intersection point of the hyperbola interpolating these three points and

the line y=x is x G = 5.884887925134553e-01. X(xo) does not exist and neither is Yo" By

Theorem 2.3-1 and the algorithm in [8,9], we compute _x' the infimum of T such that

H**(y) has no j0_-axis eigenvalues, as

o_x = 0.89442719099992.

It is easy to check that X(ax) and Y(O_x) are both positive semidefinite and

0.691300276370028 = [p[X(O_x)Y(OUx)]] 1_ < ax _- 0.89442719099992.

Therefore, o_x = 0.89442719099992 is the optimal H** norm.

Example 4:

The following is a two-block H** optimization problem which realization is given by

G(s) =

A B I

C 1 D11

C2 D21

B 2

D12

D22

-1 0

0 -2
i

1 0

0 10

0 1

1 30"

0 1

0 5

1 0

0 1
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TheRiccati solutionY is zerofor all y.Theoptimum will either occur at [3x or tz x. Two

passes are used to search for _x. In the first pass, we will try to use hyperbolic

interpolations to fired a lower bound. If it does not work, o_x will be computed. It is easy to

check if otX is the optimum. If not, otx can be used as a lower bound for 13X. Once a lower

and an upper bounds are available, we go to the second pass to search for 13X. In the

beginning, we arbitrarily choose three large numbers Xl=100, x2=110, and x3=120, and

evaluate Yi = f[X(ffi)], i=1,2,3, by (2.3-11). That is, we start with the trio

(xl,yl) = (100,2.320586064570914e+01)

(x2,Y 2) = (110,2.314605879013854e+01)

(x 3,y3) = (120,2.309652871632076e+01)

Since yl>0, x I qualifies as an upper bound x U and thus

(Xu,Yu) = (100,2.320586064570914e+01)

The hyperbola which interpolates the trio gives

x = a = 3.560891362913274e+00
a

X(,/'_a) does not exist and neither is Ya" Now, we compute a x = 5.0000000001. X(czx) is

not positive semidefinite, and so a X is not the optimum. However, we can use c_ as a

lower bound. Let XL=C*_x and evaluate YL=IIX(_L)] as follows:

(xL, YL) = (5.000000001,-5.004746766152451e+00)

Now, we have a new trio (Xu,Yu), (xL,YL), and (xE,YE) to start with in the second pass

where

(xE,Y E) = (x2,y2) = (110,2.314605879013854e+01).

After eight iterations of the second pass, we have

(xa,y a) = (2.633024605035133e+01,2.530496016219245e+01)

(xa,y a) = (2.509367259661183e+01,2.551488425827425e+01)

(Xa,Ya) = (2.500069275875799e+01,-2.360866054339716e+01)

(x ,ya) = (2.500111983723194e+01,- 1.353571348053681 e+03)

(x_,y a) -- (2.5001!3497987190e+01,1.906244532943883e+03)

(Xa,Ya) = (2.500112857428468e+01,-1.238558367307747e+05)

(x,y a) = (2.500112867114679e+01,8.504081686717725e+09)

(Xa,Ya) = (2.500112867114538e+01,3.624506009602072e+ 13)
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Wecanseethattheconvergencerateincreasesrapidlywhenthetrio is in theneighborhood

of theoptimum.TheoptimalH**normis _ ---_a = 5.000112865840668.

3. CONCLUSION AND WORK FOR FUTURE RESEARCH

3.1 Conclusion

Glover and Doyle's Riccati equation method is a breakthrough in the solution of H**

optimization problems. However, the algorithms available for the computation of the

optimal H** norm are slow and inefficient. In this report, a fast iterative algorithm based on

hyperbolic interpolations and a conjecture of convexity was proposed to compute the

optimal H** norm for four-block, two-block, and one-block H** optimization problems.

This algorithm is complete which can handle all possible cases and its convergence is

quadratic when the trio to determine the hyperbola is close to the optimum. The numerical

difficulty arising in applying Glove and Doyle's formulas to construct an optimal H**

controller was also eliminated.

The H** tools, the efficient algorithm for computing the optimal H** norm and the

reliable construction of optimal H** controllers, which we have just developed in the

previous research period will be very useful in our future research.

3.2 Work for Further Research

3.2.1 M-A Structure and Robust Stability Analysis for Structured

Uncertainties

M-A structure is a rearrangement of a perturbed system where M(s) is the nominal

system and A is a block diagonal matrix which consists of all the perturbations. M-A

structure is essential in the SSV analysis and design techniques. Although it is always

possible to pull out all uncertain parts from a perturbed system and form an M-A structure,

very little about how to obtain this structure has been addressed in the literature. A

systematic procedure for constructing M-A structure is proposed.

A minimal M-A structure means that the dimension of A (or M) of the M-A

structure is minimal. We can construct an M-A structure for a given perturbed system, but

the dimension of the structure may be unnecessarily large. A nonminimal structure will

cause unnecessary complexity in computation and therefore a minimal M-A structure is

essential in the computation of the SSV. Nevertheless, none about the minimality of M-A

32



structurehasbeenaddressedin theliterature.A progressin theconstructionof aminimal
M-A structurewill greatlysimplifyrobuststabilityanalysisfor structureduncertainties.

3.2.2 Design of Robust Controllers via H" Optimization

The next important issue is how to incorporate robust stability requirement into the

picture of the optimal controller design. Doyle et. al. [11] included a robust stability

measure into a cost function together with a robust performance measure and formulated a

structured singular value minimization problem. The concept of the SSV ball described in

the previous subsection can be also used to formulate an SSV optimization problem. It is a

realistic and nonconservative formulation. Nevertheless, no easy solution seems to be

available for this problem in the near future. Direct incorporating the nonconservative

robust stability requirement into the controller design may be difficult at present time.

However, we will keep this problem in mind and consider it as one of our long-term

research problems. A feasible indirect design approach is proposed.

In the proposed approach, we will use the H** norm of the complementary

sensitivity function as a measure of robust stability and will formulate an H** optimization

problem which minimizes the maximum error energy subject to a robust stability constraint.

The error reduction and the robust stability can be traded off by choosing the weighting

matrices in the cost function. Initially, a weighting matrix is chosen and the corresponding

IT'* optimization problem is solved to obtain an optimal controller. The weighting matrices

are modified iteratively until the robust stability constraint is just satisfied. The way the

weighting matrices affect the trade-off is only partially understood. In addition to the

magnitude of the weighting matrix, the structure of the weighting matrix is also an

important factor in the trade-off. We will investigate how the weighting matrices affect the

trade-off. We will also develop an iterative updating procedure for the weighting matrices

by which a robust controller can be designed such that the closed-loop system is robustly

stable and the maximum of error energy is minimized.

3.2.3 Design of Robust Controllers via Mixed H2/H °° Optimization

The optimal H** controller which minimizes the H** optimization problem usually

has wide bandwidth and leads to a poor 1-12performance. In [5], we found that a little bit

sacrifice of the H _*norm will greatly reduce the bandwidth of the controller and improve the

H 2 performance tremendously. It is practical to formulate a robust control problem as a that

of minimizing an H 2 cost function subject to an H** bound. The H 2 cost function is
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equivalentto thewell knownLQGcostfunctionandtheH**boundcantakecareof robust

stabilityandrobusterrorreduction.

The only approachavailable in the literature for solving the mixed H2/H**

optimization problemwasproposedby BernsteinandHaddad[13]. A set of coupled
Riccatiequationsareinvolvedandonlyin aspecialeasethesecoupledRiccatiequationscan
be solved. Furthermore, the numerical algorithm for these equations is a homotopy

algorithm which is not efficient. A research in finding more efficient approach for the

mixed r-l'2/H **optimization problem is proposed.

3.2.4 Controllability and Observability of Perturbed Plant

Although a number of DOC (Degree of Controllability) and DOO (Degree of

Observability) measures have been def'med to quantify the controllability and observability

of a system, none of them have been used as part of the design of robust controller.

In this study, we shall address this question. Specifically, in'st we shall determine

how sensitivity are the available DOCs and DOOs to the structured uncertainties and

unmodelled dynamics. Then we shall find a maximal domain of perturbation _ which

guarantees a specified level of Degree of ControUability (DOC) and another domain of

perturbation which guarantees a specified level of Degree of Observability (DOO). These

domains give the controllability and observability margins which take into account the

uncertainties in the system model. Once these margins have been def'med, then they will be

integrated with the stability margins to develop a methodology for the design of robust

controllers.
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